Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Prediction-Aware Quality Enhancement of VVC Using CNN (2112.04225v1)

Published 8 Dec 2021 in eess.IV

Abstract: The upcoming video coding standard, Versatile Video Coding (VVC), has shown great improvement compared to its predecessor, High Efficiency Video Coding (HEVC), in terms of bitrate saving. Despite its substantial performance, compressed videos might still suffer from quality degradation at low bitrates due to coding artifacts such as blockiness, blurriness and ringing. In this work, we exploit Convolutional Neural Networks (CNN) to enhance quality of VVC coded frames after decoding in order to reduce low bitrate artifacts. The main contribution of this work is the use of coding information from the compressed bitstream. More precisely, the prediction information of intra frames is used for training the network in addition to the reconstruction information. The proposed method is applied on both luminance and chrominance components of intra coded frames of VVC. Experiments on VVC Test Model (VTM) show that, both in low and high bitrates, the use of coding information can improve the BD-rate performance by about 1% and 6% for luma and chroma components, respectively.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.