Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Review for Deep Reinforcement Learning in Atari:Benchmarks, Challenges, and Solutions (2112.04145v5)

Published 8 Dec 2021 in cs.AI

Abstract: The Arcade Learning Environment (ALE) is proposed as an evaluation platform for empirically assessing the generality of agents across dozens of Atari 2600 games. ALE offers various challenging problems and has drawn significant attention from the deep reinforcement learning (RL) community. From Deep Q-Networks (DQN) to Agent57, RL agents seem to achieve superhuman performance in ALE. However, is this the case? In this paper, to explore this problem, we first review the current evaluation metrics in the Atari benchmarks and then reveal that the current evaluation criteria of achieving superhuman performance are inappropriate, which underestimated the human performance relative to what is possible. To handle those problems and promote the development of RL research, we propose a novel Atari benchmark based on human world records (HWR), which puts forward higher requirements for RL agents on both final performance and learning efficiency. Furthermore, we summarize the state-of-the-art (SOTA) methods in Atari benchmarks and provide benchmark results over new evaluation metrics based on human world records. We concluded that at least four open challenges hinder RL agents from achieving superhuman performance from those new benchmark results. Finally, we also discuss some promising ways to handle those problems.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)