Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Blocking Trails for $f$-factors of Multigraphs (2112.04096v1)

Published 8 Dec 2021 in cs.DS

Abstract: Blocking flows, introduced by Dinic [2] for network flow, have been used to speed up many augmenting-path type algorithms, especially matching algorithms e.g., [18, 23, 16]. We present an $O(m)$ time algorithm for blocking trails for f-factors of general multigraphs. This improves a previous algorithm by a factor of $\alpha(m,n)$. This speeds up a number of efficient algorithms for f-factors, e.g., the algorithm of [11] for maximum weight f-matching improves by the aforementioned $\alpha(m,n)$ factor to running time $O( \sqrt {\Phi \log \Phi} m \log (\Phi W) )$ for $\Phi =\sum _{v\in V} f(v)$, $W$ the maximum edge weight. This time bound is within a factor $\sqrt {\log \Phi}$ of the bound for bipartite multigraphs. The technical difficulty for this work stems from the fact that previous algorithms for both matching and $f$-matching use vertex contractions to form blossoms, but our dfs-based approach necessitates using edge contractions. As an example difficulty, edge contractions introduce a new form of blossoms we call "skew blossoms". These are configurations that must be reorganized in order to become valid blossoms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)