Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Hyper-parameter optimization based on soft actor critic and hierarchical mixture regularization (2112.04084v1)

Published 8 Dec 2021 in cs.LG and cs.AI

Abstract: Hyper-parameter optimization is a crucial problem in machine learning as it aims to achieve the state-of-the-art performance in any model. Great efforts have been made in this field, such as random search, grid search, Bayesian optimization. In this paper, we model hyper-parameter optimization process as a Markov decision process, and tackle it with reinforcement learning. A novel hyper-parameter optimization method based on soft actor critic and hierarchical mixture regularization has been proposed. Experiments show that the proposed method can obtain better hyper-parameters in a shorter time.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.