Papers
Topics
Authors
Recent
2000 character limit reached

Embedding Gradient-based Optimization in Image Registration Networks (2112.03915v2)

Published 7 Dec 2021 in eess.IV and cs.CV

Abstract: Deep learning (DL) image registration methods amortize the costly pair-wise iterative optimization by training deep neural networks to predict the optimal transformation in one fast forward-pass. In this work, we bridge the gap between traditional iterative energy optimization-based registration and network-based registration, and propose Gradient Descent Network for Image Registration (GraDIRN). Our proposed approach trains a DL network that embeds unrolled multiresolution gradient-based energy optimization in its forward pass, which explicitly enforces image dissimilarity minimization in its update steps. Extensive evaluations were performed on registration tasks using 2D cardiac MR and 3D brain MR images. We demonstrate that our approach achieved state-of-the-art registration performance while using fewer learned parameters, with good data efficiency and domain robustness.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.