Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Efficient joint noise removal and multi exposure fusion (2112.03701v1)

Published 4 Dec 2021 in eess.IV and cs.CV

Abstract: Multi-exposure fusion (MEF) is a technique for combining different images of the same scene acquired with different exposure settings into a single image. All the proposed MEF algorithms combine the set of images, somehow choosing from each one the part with better exposure. We propose a novel multi-exposure image fusion chain taking into account noise removal. The novel method takes advantage of DCT processing and the multi-image nature of the MEF problem. We propose a joint fusion and denoising strategy taking advantage of spatio-temporal patch selection and collaborative 3D thresholding. The overall strategy permits to denoise and fuse the set of images without the need of recovering each denoised exposure image, leading to a very efficient procedure.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.