Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Secure learning-based MPC via garbled circuit (2112.03654v1)

Published 7 Dec 2021 in eess.SY and cs.SY

Abstract: Encrypted control seeks confidential controller evaluation in cloud-based or networked systems. Many existing approaches build on homomorphic encryption (HE) that allow simple mathematical operations to be carried out on encrypted data. Unfortunately, HE is computationally demanding and many control laws (in particular non-polynomial ones) cannot be efficiently implemented with this technology. We show in this paper that secure two-party computation using garbled circuits provides a powerful alternative to HE for encrypted control. More precisely, we present a novel scheme that allows to efficiently implement (non-polynomial) max-out neural networks with one hidden layer in a secure fashion. These networks are of special interest for control since they allow, in principle, to exactly describe piecewise affine control laws resulting from, e.g., linear model predictive control (MPC). However, exact fits require high-dimensional preactivations of the neurons. Fortunately, we illustrate that even low-dimensional learning-based approximations are sufficiently accurate for linear MPC. In addition, these approximations can be securely evaluated using garbled circuit in less than 100~ms for our numerical example. Hence, our approach opens new opportunities for applying encrypted control.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.