Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Time-Equivariant Contrastive Video Representation Learning (2112.03624v1)

Published 7 Dec 2021 in cs.CV

Abstract: We introduce a novel self-supervised contrastive learning method to learn representations from unlabelled videos. Existing approaches ignore the specifics of input distortions, e.g., by learning invariance to temporal transformations. Instead, we argue that video representation should preserve video dynamics and reflect temporal manipulations of the input. Therefore, we exploit novel constraints to build representations that are equivariant to temporal transformations and better capture video dynamics. In our method, relative temporal transformations between augmented clips of a video are encoded in a vector and contrasted with other transformation vectors. To support temporal equivariance learning, we additionally propose the self-supervised classification of two clips of a video into 1. overlapping 2. ordered, or 3. unordered. Our experiments show that time-equivariant representations achieve state-of-the-art results in video retrieval and action recognition benchmarks on UCF101, HMDB51, and Diving48.

Citations (57)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)