Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Label Hallucination for Few-Shot Classification (2112.03340v1)

Published 6 Dec 2021 in cs.CV and cs.LG

Abstract: Few-shot classification requires adapting knowledge learned from a large annotated base dataset to recognize novel unseen classes, each represented by few labeled examples. In such a scenario, pretraining a network with high capacity on the large dataset and then finetuning it on the few examples causes severe overfitting. At the same time, training a simple linear classifier on top of "frozen" features learned from the large labeled dataset fails to adapt the model to the properties of the novel classes, effectively inducing underfitting. In this paper we propose an alternative approach to both of these two popular strategies. First, our method pseudo-labels the entire large dataset using the linear classifier trained on the novel classes. This effectively "hallucinates" the novel classes in the large dataset, despite the novel categories not being present in the base database (novel and base classes are disjoint). Then, it finetunes the entire model with a distillation loss on the pseudo-labeled base examples, in addition to the standard cross-entropy loss on the novel dataset. This step effectively trains the network to recognize contextual and appearance cues that are useful for the novel-category recognition but using the entire large-scale base dataset and thus overcoming the inherent data-scarcity problem of few-shot learning. Despite the simplicity of the approach, we show that that our method outperforms the state-of-the-art on four well-established few-shot classification benchmarks.

Citations (33)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.