Papers
Topics
Authors
Recent
2000 character limit reached

A Family of Density-Scaled Filtered Complexes (2112.03334v2)

Published 6 Dec 2021 in cs.CG, math.AT, and physics.data-an

Abstract: We develop novel methods for using persistent homology to infer the homology of an unknown Riemannian manifold $(M, g)$ from a point cloud sampled from an arbitrary smooth probability density function. Standard distance-based filtered complexes, such as the \v{C}ech complex, often have trouble distinguishing noise from features that are simply small. We address this problem by defining a family of "density-scaled filtered complexes" that includes a density-scaled \v{C}ech complex and a density-scaled Vietoris--Rips complex. We show that the density-scaled \v{C}ech complex is homotopy-equivalent to $M$ for filtration values in an interval whose starting point converges to $0$ in probability as the number of points $N \to \infty$ and whose ending point approaches infinity as $N \to \infty$. By contrast, the standard \v{C}ech complex may only be homotopy-equivalent to $M$ for a very small range of filtration values. The density-scaled filtered complexes also have the property that they are invariant under conformal transformations, such as scaling. We implement a filtered complex $\widehat{DVR}$ that approximates the density-scaled Vietoris--Rips complex, and we empirically test the performance of our implementation. As examples, we use $\widehat{DVR}$ to identify clusters that have different densities, and we apply $\widehat{DVR}$ to a time-delay embedding of the Lorenz dynamical system. Our implementation is stable (under conditions that are almost surely satisfied) and designed to handle outliers in the point cloud that do not lie on $M$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.