Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

MatMat: Matrix Factorization by Matrix Fitting (2112.03089v1)

Published 6 Dec 2021 in cs.IR

Abstract: Matrix factorization is a widely adopted recommender system technique that fits scalar rating values by dot products of user feature vectors and item feature vectors. However, the formulation of matrix factorization as a scalar fitting problem is not friendly to side information incorporation or multi-task learning. In this paper, we replace the scalar values of the user rating matrix by matrices, and fit the matrix values by matrix products of user feature matrix and item feature matrix. Our framework is friendly to multitask learning and side information incorporation. We use popularity data as side information in our paper in particular to enhance the performance of matrix factorization techniques. In the experiment section, we prove the competence of our method compared with other approaches using both accuracy and fairness metrics. Our framework is an ideal substitute for tensor factorization in context-aware recommendation and many other scenarios.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)