Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Reinforcement Learning for Navigation of Mobile Robot with LiDAR (2112.02954v2)

Published 6 Dec 2021 in cs.RO, cs.SY, and eess.SY

Abstract: This paper presents a technique for navigation of mobile robot with Deep Q-Network (DQN) combined with Gated Recurrent Unit (GRU). The DQN integrated with the GRU allows action skipping for improved navigation performance. This technique aims at efficient navigation of mobile robot such as autonomous parking robot. Framework for reinforcement learning can be applied to the DQN combined with the GRU in a real environment, which can be modeled by the Partially Observable Markov Decision Process (POMDP). By allowing action skipping, the ability of the DQN combined with the GRU in learning key-action can be improved. The proposed algorithm is applied to explore the feasibility of solution in real environment by the ROS-Gazebo simulator, and the simulation results show that the proposed algorithm achieves improved performance in navigation and collision avoidance as compared to the results obtained by DQN alone and DQN combined with GRU without allowing action skipping.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube