Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Social Sourcing: Incorporating Social Networks Into Crowdsourcing Contest Design (2112.02884v2)

Published 6 Dec 2021 in cs.AI, cs.GT, and econ.TH

Abstract: In a crowdsourcing contest, a principal holding a task posts it to a crowd. People in the crowd then compete with each other to win the rewards. Although in real life, a crowd is usually networked and people influence each other via social ties, existing crowdsourcing contest theories do not aim to answer how interpersonal relationships influence people's incentives and behaviors and thereby affect the crowdsourcing performance. In this work, we novelly take people's social ties as a key factor in the modeling and designing of agents' incentives in crowdsourcing contests. We establish two contest mechanisms by which the principal can impel the agents to invite their neighbors to contribute to the task. The first mechanism has a symmetric Bayesian Nash equilibrium, and it is very simple for agents to play and easy for the principal to predict the contest performance. The second mechanism has an asymmetric Bayesian Nash equilibrium, and agents' behaviors in equilibrium show a vast diversity which is strongly related to their social relations. The Bayesian Nash equilibrium analysis of these new mechanisms reveals that, besides agents' intrinsic abilities, the social relations among them also play a central role in decision-making. Moreover, we design an effective algorithm to automatically compute the Bayesian Nash equilibrium of the invitation crowdsourcing contest and further adapt it to a large graph dataset. Both theoretical and empirical results show that the new invitation crowdsourcing contests can substantially enlarge the number of participants, whereby the principal can obtain significantly better solutions without a large advertisement expenditure.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube