Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

An Effective GCN-based Hierarchical Multi-label classification for Protein Function Prediction (2112.02810v1)

Published 6 Dec 2021 in cs.AI

Abstract: We propose an effective method to improve Protein Function Prediction (PFP) utilizing hierarchical features of Gene Ontology (GO) terms. Our method consists of a LLM for encoding the protein sequence and a Graph Convolutional Network (GCN) for representing GO terms. To reflect the hierarchical structure of GO to GCN, we employ node(GO term)-wise representations containing the whole hierarchical information. Our algorithm shows effectiveness in a large-scale graph by expanding the GO graph compared to previous models. Experimental results show that our method outperformed state-of-the-art PFP approaches.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.