Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Gumble Softmax For User Behavior Modeling (2112.02787v2)

Published 6 Dec 2021 in cs.IR

Abstract: Recently, sequential recommendation systems are important in solving the information overload in many online services. Current methods in sequential recommendation focus on learning a fixed number of representations for each user at any time, with a single representation or multi representations for the user. However, when a user is exploring items on an e-commerce recommendation system, the number of this user's hobbies may change overtime (e.g. increase/reduce one more interest), affected by the user's evolving self needs. Moreover, different users may have various number of interests. In this paper, we argue that it is meaningful to explore a personalized dynamic number of user interests, and learn a dynamic group of user interest representations accordingly. We propose a sequential model with dynamic number of representations for recommendation systems (RDRSR). Specifically, RDRSR is composed of a dynamic interest discriminator (DID) module and a dynamic interest allocator (DIA) module. The DID module explores the number of a user's interests by learning the overall sequential characteristics with bi-directional self-attention and Gumbel-Softmax. The DIA module make the historical clicked items into a group of item groups and constructs user's dynamic interest representation. Additionally, experiments on the real-world datasets demonstrates our model's effectiveness.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube