Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning Query Expansion over the Nearest Neighbor Graph (2112.02666v1)

Published 5 Dec 2021 in cs.CV

Abstract: Query Expansion (QE) is a well established method for improving retrieval metrics in image search applications. When using QE, the search is conducted on a new query vector, constructed using an aggregation function over the query and images from the database. Recent works gave rise to QE techniques in which the aggregation function is learned, whereas previous techniques were based on hand-crafted aggregation functions, e.g., taking the mean of the query's nearest neighbors. However, most QE methods have focused on aggregation functions that work directly over the query and its immediate nearest neighbors. In this work, a hierarchical model, Graph Query Expansion (GQE), is presented, which is learned in a supervised manner and performs aggregation over an extended neighborhood of the query, thus increasing the information used from the database when computing the query expansion, and using the structure of the nearest neighbors graph. The technique achieves state-of-the-art results over known benchmarks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.