Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

Using Static and Dynamic Malware features to perform Malware Ascription (2112.02639v1)

Published 5 Dec 2021 in cs.CR and cs.LG

Abstract: Malware ascription is a relatively unexplored area, and it is rather difficult to attribute malware and detect authorship. In this paper, we employ various Static and Dynamic features of malicious executables to classify malware based on their family. We leverage Cuckoo Sandbox and machine learning to make progress in this research. Post analysis, classification is performed using various deep learning and machine learning algorithms. Using the features gathered from VirusTotal (static) and Cuckoo (dynamic) reports, we ran the vectorized data against Multinomial Naive Bayes, Support Vector Machine, and Bagging using Decision Trees as the base estimator. For each classifier, we tuned the hyper-parameters using exhaustive search methods. Our reports can be extremely useful in malware ascription.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube