Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Functional Task Tree Generation from a Knowledge Graph to Solve Unseen Problems (2112.02433v1)

Published 4 Dec 2021 in cs.RO and cs.AI

Abstract: A major component for developing intelligent and autonomous robots is a suitable knowledge representation, from which a robot can acquire knowledge about its actions or world. However, unlike humans, robots cannot creatively adapt to novel scenarios, as their knowledge and environment are rigidly defined. To address the problem of producing novel and flexible task plans called task trees, we explore how we can derive plans with concepts not originally in the robot's knowledge base. Existing knowledge in the form of a knowledge graph is used as a base of reference to create task trees that are modified with new object or state combinations. To demonstrate the flexibility of our method, we randomly selected recipes from the Recipe1M+ dataset and generated their task trees. The task trees were then thoroughly checked with a visualization tool that portrays how each ingredient changes with each action to produce the desired meal. Our results indicate that the proposed method can produce task plans with high accuracy even for never-before-seen ingredient combinations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.