Papers
Topics
Authors
Recent
2000 character limit reached

Interactive Disentanglement: Learning Concepts by Interacting with their Prototype Representations (2112.02290v2)

Published 4 Dec 2021 in cs.CV and cs.LG

Abstract: Learning visual concepts from raw images without strong supervision is a challenging task. In this work, we show the advantages of prototype representations for understanding and revising the latent space of neural concept learners. For this purpose, we introduce interactive Concept Swapping Networks (iCSNs), a novel framework for learning concept-grounded representations via weak supervision and implicit prototype representations. iCSNs learn to bind conceptual information to specific prototype slots by swapping the latent representations of paired images. This semantically grounded and discrete latent space facilitates human understanding and human-machine interaction. We support this claim by conducting experiments on our novel data set "Elementary Concept Reasoning" (ECR), focusing on visual concepts shared by geometric objects.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.