Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Node-wise Hardware Trojan Detection Based on Graph Learning (2112.02213v2)

Published 4 Dec 2021 in cs.CR

Abstract: In the fourth industrial revolution, securing the protection of the supply chain has become an ever-growing concern. One such cyber threat is a hardware Trojan (HT), a malicious modification to an IC. HTs are often identified in the hardware manufacturing process, but should be removed earlier, when the design is being specified. Machine learning-based HT detection in gate-level netlists is an efficient approach to identify HTs at the early stage. However, feature-based modeling has limitations in discovering an appropriate set of HT features. We thus propose NHTD-GL in this paper, a novel node-wise HT detection method based on graph learning (GL). Given the formal analysis of HT features obtained from domain knowledge, NHTD-GL bridges the gap between graph representation learning and feature-based HT detection. The experimental results demonstrate that NHTD-GL achieves 0.998 detection accuracy and outperforms state-of-the-art node-wise HT detection methods. NHTD-GL extracts HT features without heuristic feature engineering.

Citations (11)

Summary

We haven't generated a summary for this paper yet.