Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Node-wise Hardware Trojan Detection Based on Graph Learning (2112.02213v2)

Published 4 Dec 2021 in cs.CR

Abstract: In the fourth industrial revolution, securing the protection of the supply chain has become an ever-growing concern. One such cyber threat is a hardware Trojan (HT), a malicious modification to an IC. HTs are often identified in the hardware manufacturing process, but should be removed earlier, when the design is being specified. Machine learning-based HT detection in gate-level netlists is an efficient approach to identify HTs at the early stage. However, feature-based modeling has limitations in discovering an appropriate set of HT features. We thus propose NHTD-GL in this paper, a novel node-wise HT detection method based on graph learning (GL). Given the formal analysis of HT features obtained from domain knowledge, NHTD-GL bridges the gap between graph representation learning and feature-based HT detection. The experimental results demonstrate that NHTD-GL achieves 0.998 detection accuracy and outperforms state-of-the-art node-wise HT detection methods. NHTD-GL extracts HT features without heuristic feature engineering.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.