An iterative solver for the HPS discretization applied to three dimensional Helmholtz problems (2112.02211v2)
Abstract: This manuscript presents an efficient solver for the linear system that arises from the Hierarchical Poincar\'e-Steklov (HPS) discretization of three dimensional variable coefficient Helmholtz problems. Previous work on the HPS method has tied it with a direct solver. This work is the first efficient iterative solver for the linear system that results from the HPS discretization. The solution technique utilizes GMRES coupled with a locally homogenized block-Jacobi preconditioner. The local nature of the discretization and preconditioner naturally yield the matrix-free application of the linear system. Numerical results illustrate the performance of the solution technique. This includes an experiment where a problem approximately 100 wavelengths in each direction that requires more than a billion unknowns to achieve approximately 4 digits of accuracy takes less than 20 minutes to solve.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.