Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Unifying the geometric decompositions of full and trimmed polynomial spaces in finite element exterior calculus (2112.02174v2)

Published 3 Dec 2021 in math.NA and cs.NA

Abstract: Arnold, Falk, & Winther, in "Finite element exterior calculus, homological techniques, and applications" (2006), show how to geometrically decompose the full and trimmed polynomial spaces on simplicial elements into direct sums of trace-free subspaces and in "Geometric decompositions and local bases for finite element differential forms" (2009) the same authors give direct constructions of extension operators for the same spaces. The two families -- full and trimmed -- are treated separately, using differently defined isomorphisms between each and the other's trace-free subspaces and mutually incompatible extension operators. This work describes a single operator $\mathring{\star}T$ that unifies the two isomorphisms and also defines a weighted-$L2$ norm appropriate for defining well-conditioned basis functions and dual-basis functionals for geometric decomposition. This work also describes a single extension operator $\dot{E}{\sigma,T}$ that implements geometric decompositions of all differential forms as well as for the full and trimmed polynomial spaces separately.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube