Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improving the Reliability of Network Intrusion Detection Systems through Dataset Integration (2112.02080v1)

Published 2 Dec 2021 in cs.LG, cs.CR, and cs.NI

Abstract: This work presents Reliable-NIDS (R-NIDS), a novel methodology for Machine Learning (ML) based Network Intrusion Detection Systems (NIDSs) that allows ML models to work on integrated datasets, empowering the learning process with diverse information from different datasets. Therefore, R-NIDS targets the design of more robust models, that generalize better than traditional approaches. We also propose a new dataset, called UNK21. It is built from three of the most well-known network datasets (UGR'16, USNW-NB15 and NLS-KDD), each one gathered from its own network environment, with different features and classes, by using a data aggregation approach present in R-NIDS. Following R-NIDS, in this work we propose to build two well-known ML models (a linear and a non-linear one) based on the information of three of the most common datasets in the literature for NIDS evaluation, those integrated in UNK21. The results that the proposed methodology offers show how these two ML models trained as a NIDS solution could benefit from this approach, being able to generalize better when training on the newly proposed UNK21 dataset. Furthermore, these results are carefully analyzed with statistical tools that provide high confidence on our conclusions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.