Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Catch Me If You Can: Blackbox Adversarial Attacks on Automatic Speech Recognition using Frequency Masking (2112.01821v2)

Published 3 Dec 2021 in cs.SD, cs.CL, cs.SE, and eess.AS

Abstract: Automatic speech recognition (ASR) models are prevalent, particularly in applications for voice navigation and voice control of domestic appliances. The computational core of ASRs are deep neural networks (DNNs) that have been shown to be susceptible to adversarial perturbations; easily misused by attackers to generate malicious outputs. To help test the security and robustnesss of ASRS, we propose techniques that generate blackbox (agnostic to the DNN), untargeted adversarial attacks that are portable across ASRs. This is in contrast to existing work that focuses on whitebox targeted attacks that are time consuming and lack portability. Our techniques generate adversarial attacks that have no human audible difference by manipulating the audio signal using a psychoacoustic model that maintains the audio perturbations below the thresholds of human perception. We evaluate portability and effectiveness of our techniques using three popular ASRs and two input audio datasets using the metrics - Word Error Rate (WER) of output transcription, Similarity to original audio, attack Success Rate on different ASRs and Detection score by a defense system. We found our adversarial attacks were portable across ASRs, not easily detected by a state-of-the-art defense system, and had significant difference in output transcriptions while sounding similar to original audio.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.