Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of substructuring Methods for the Cahn-Hilliard Equation (2112.01699v1)

Published 3 Dec 2021 in math.NA and cs.NA

Abstract: In this paper, we formulate and study substructuring type algorithm for the Cahn-Hilliard (CH) equation, which was originally proposed to describe the phase separation phenomenon for binary melted alloy below the critical temperature and since then it has appeared in many fields ranging from tumour growth simulation, image processing, thin liquid films, population dynamics etc. Being a non-linear equation, it is important to develop robust numerical techniques to solve the CH equation. Here we present the formulation of Dirichlet-Neumann (DN) and Neumann-Neumann (NN) methods applied to CH equation and study their convergence behaviour. We consider the domain-decomposition based DN and NN methods in one and two space dimension for two subdomains and extend the study for multi-subdomain setting for NN method. We verify our findings with numerical results.

Citations (4)

Summary

We haven't generated a summary for this paper yet.