Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Data-Enabled Gradient Flow as Feedback Controller: Regulation of Linear Dynamical Systems to Minimizers of Unknown Functions (2112.01652v3)

Published 3 Dec 2021 in math.OC, cs.SY, and eess.SY

Abstract: This paper considers the problem of regulating a linear dynamical system to the solution of a convex optimization problem with an unknown or partially-known cost. We design a data-driven feedback controller - based on gradient flow dynamics - that (i) is augmented with learning methods to estimate the cost function based on infrequent (and possibly noisy) functional evaluations; and, concurrently, (ii) is designed to drive the inputs and outputs of the dynamical system to the optimizer of the problem. We derive sufficient conditions on the learning error and the controller gain to ensure that the error between the optimizer of the problem and the state of the closed-loop system is ultimately bounded; the error bound accounts for the functional estimation errors and the temporal variability of the unknown disturbance affecting the linear dynamical system. Our results directly lead to exponential input-to-state stability of the closed-loop system. The proposed method and the theoretical bounds are validated numerically.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.