Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

AdaSplit: Adaptive Trade-offs for Resource-constrained Distributed Deep Learning (2112.01637v1)

Published 2 Dec 2021 in cs.LG

Abstract: Distributed deep learning frameworks like federated learning (FL) and its variants are enabling personalized experiences across a wide range of web clients and mobile/IoT devices. However, FL-based frameworks are constrained by computational resources at clients due to the exploding growth of model parameters (eg. billion parameter model). Split learning (SL), a recent framework, reduces client compute load by splitting the model training between client and server. This flexibility is extremely useful for low-compute setups but is often achieved at cost of increase in bandwidth consumption and may result in sub-optimal convergence, especially when client data is heterogeneous. In this work, we introduce AdaSplit which enables efficiently scaling SL to low resource scenarios by reducing bandwidth consumption and improving performance across heterogeneous clients. To capture and benchmark this multi-dimensional nature of distributed deep learning, we also introduce C3-Score, a metric to evaluate performance under resource budgets. We validate the effectiveness of AdaSplit under limited resources through extensive experimental comparison with strong federated and split learning baselines. We also present a sensitivity analysis of key design choices in AdaSplit which validates the ability of AdaSplit to provide adaptive trade-offs across variable resource budgets.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.