Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Newton methods based convolution neural networks using parallel processing (2112.01401v3)

Published 2 Dec 2021 in cs.LG and cs.AI

Abstract: Training of convolutional neural networks is a high dimensional and a non-convex optimization problem. At present, it is inefficient in situations where parametric learning rates can not be confidently set. Some past works have introduced Newton methods for training deep neural networks. Newton methods for convolutional neural networks involve complicated operations. Finding the Hessian matrix in second-order methods becomes very complex as we mainly use the finite differences method with the image data. Newton methods for convolutional neural networks deals with this by using the sub-sampled Hessian Newton methods. In this paper, we have used the complete data instead of the sub-sampled methods that only handle partial data at a time. Further, we have used parallel processing instead of serial processing in mini-batch computations. The results obtained using parallel processing in this study, outperform the time taken by the previous approach.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.