Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The Impact of Data Distribution on Fairness and Robustness in Federated Learning (2112.01274v1)

Published 29 Nov 2021 in cs.LG and cs.AI

Abstract: Federated Learning (FL) is a distributed machine learning protocol that allows a set of agents to collaboratively train a model without sharing their datasets. This makes FL particularly suitable for settings where data privacy is desired. However, it has been observed that the performance of FL is closely related to the similarity of the local data distributions of agents. Particularly, as the data distributions of agents differ, the accuracy of the trained models drop. In this work, we look at how variations in local data distributions affect the fairness and the robustness properties of the trained models in addition to the accuracy. Our experimental results indicate that, the trained models exhibit higher bias, and become more susceptible to attacks as local data distributions differ. Importantly, the degradation in the fairness, and robustness can be much more severe than the accuracy. Therefore, we reveal that small variations that have little impact on the accuracy could still be important if the trained model is to be deployed in a fairness/security critical context.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.