Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

AST-Transformer: Encoding Abstract Syntax Trees Efficiently for Code Summarization (2112.01184v1)

Published 2 Dec 2021 in cs.CL and cs.SE

Abstract: Code summarization aims to generate brief natural language descriptions for source code. As source code is highly structured and follows strict programming language grammars, its Abstract Syntax Tree (AST) is often leveraged to inform the encoder about the structural information. However, ASTs are usually much longer than the source code. Current approaches ignore the size limit and simply feed the whole linearized AST into the encoder. To address this problem, we propose AST-Transformer to efficiently encode tree-structured ASTs. Experiments show that AST-Transformer outperforms the state-of-arts by a substantial margin while being able to reduce $90\sim95\%$ of the computational complexity in the encoding process.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com