Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Risk-Aware Algorithms for Combinatorial Semi-Bandits (2112.01141v1)

Published 2 Dec 2021 in cs.LG and cs.AI

Abstract: In this paper, we study the stochastic combinatorial multi-armed bandit problem under semi-bandit feedback. While much work has been done on algorithms that optimize the expected reward for linear as well as some general reward functions, we study a variant of the problem, where the objective is to be risk-aware. More specifically, we consider the problem of maximizing the Conditional Value-at-Risk (CVaR), a risk measure that takes into account only the worst-case rewards. We propose new algorithms that maximize the CVaR of the rewards obtained from the super arms of the combinatorial bandit for the two cases of Gaussian and bounded arm rewards. We further analyze these algorithms and provide regret bounds. We believe that our results provide the first theoretical insights into combinatorial semi-bandit problems in the risk-aware case.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.