Papers
Topics
Authors
Recent
2000 character limit reached

Long-Term Recurrent Convolutional Network-based Inertia Estimation using Ambient Measurements (2112.00926v1)

Published 2 Dec 2021 in eess.SY and cs.SY

Abstract: Conventional synchronous machines are gradually replaced by converter-based renewable resources. As a result, synchronous inertia, an important time-varying quantity, has substantially more impact on modern power systems stability. The increasing integration of renewable energy resources imports different dynamics into traditional power systems; therefore, the estimation of system inertia using mathematical model becomes more difficult. In this paper, we propose a novel learning-assisted inertia estimation model based on long-term recurrent convolutional network (LRCN) that uses system wide frequency and phase voltage measurements. The proposed approach uses a non-intrusive probing signal to perturb the system and collects ambient measurements with phasor measurement units (PMU) to train the proposed LRCN model. Case studies are conducted on the IEEE 24-bus system. Under a signal-to-noise ratio (SNR) of 60dB condition, the proposed LRCN based inertia estimation model achieves an accuracy of 97.56% with a mean squared error (MSE) of 0.0552. Furthermore, with a low SNR of 45dB, the proposed learning-assisted inertia estimation model is still able to achieve a high accuracy of 93.07%.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.