Reference-guided Pseudo-Label Generation for Medical Semantic Segmentation (2112.00735v1)
Abstract: Producing densely annotated data is a difficult and tedious task for medical imaging applications. To address this problem, we propose a novel approach to generate supervision for semi-supervised semantic segmentation. We argue that visually similar regions between labeled and unlabeled images likely contain the same semantics and therefore should share their label. Following this thought, we use a small number of labeled images as reference material and match pixels in an unlabeled image to the semantics of the best fitting pixel in a reference set. This way, we avoid pitfalls such as confirmation bias, common in purely prediction-based pseudo-labeling. Since our method does not require any architectural changes or accompanying networks, one can easily insert it into existing frameworks. We achieve the same performance as a standard fully supervised model on X-ray anatomy segmentation, albeit 95% fewer labeled images. Aside from an in-depth analysis of different aspects of our proposed method, we further demonstrate the effectiveness of our reference-guided learning paradigm by comparing our approach against existing methods for retinal fluid segmentation with competitive performance as we improve upon recent work by up to 15% mean IoU.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.