Near-Optimal Distributed Degree+1 Coloring (2112.00604v1)
Abstract: We present a new approach to randomized distributed graph coloring that is simpler and more efficient than previous ones. In particular, it allows us to tackle the $(\operatorname{deg}+1)$-list-coloring (D1LC) problem, where each node $v$ of degree $d_v$ is assigned a palette of $d_v+1$ colors, and the objective is to find a proper coloring using these palettes. While for $(\Delta+1)$-coloring (where $\Delta$ is the maximum degree), there is a fast randomized distributed $O(\log3\log n)$-round algorithm (Chang, Li, and Pettie [SIAM J. Comp. 2020]), no $o(\log n)$-round algorithms are known for the D1LC problem. We give a randomized distributed algorithm for D1LC that is optimal under plausible assumptions about the deterministic complexity of the problem. Using the recent deterministic algorithm of Ghaffari and Kuhn [FOCS2021], our algorithm runs in $O(\log3 \log n)$ time, matching the best bound known for $(\Delta+1)$-coloring. In addition, it colors all nodes of degree $\Omega(\log7 n)$ in $O(\log* n)$ rounds. A key contribution is a subroutine to generate slack for D1LC. When placed into the framework of Assadi, Chen, and Khanna [SODA2019] and Alon and Assadi [APPROX/RANDOM2020], this almost immediately leads to a palette sparsification theorem for D1LC, generalizing previous results. That gives fast algorithms for D1LC in three different models: an $O(1)$-round algorithm in the MPC model with $\tilde{O}(n)$ memory per machine; a single-pass semi-streaming algorithm in dynamic streams; and an $\tilde{O}(n\sqrt{n})$-time algorithm in the standard query model.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.