Papers
Topics
Authors
Recent
2000 character limit reached

Systematic Generalization with Edge Transformers (2112.00578v1)

Published 1 Dec 2021 in cs.CL and cs.LG

Abstract: Recent research suggests that systematic generalization in natural language understanding remains a challenge for state-of-the-art neural models such as Transformers and Graph Neural Networks. To tackle this challenge, we propose Edge Transformer, a new model that combines inspiration from Transformers and rule-based symbolic AI. The first key idea in Edge Transformers is to associate vector states with every edge, that is, with every pair of input nodes -- as opposed to just every node, as it is done in the Transformer model. The second major innovation is a triangular attention mechanism that updates edge representations in a way that is inspired by unification from logic programming. We evaluate Edge Transformer on compositional generalization benchmarks in relational reasoning, semantic parsing, and dependency parsing. In all three settings, the Edge Transformer outperforms Relation-aware, Universal and classical Transformer baselines.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.