Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

CAMA: Energy and Memory Efficient Automata Processing in Content-Addressable Memories (2112.00267v1)

Published 1 Dec 2021 in cs.AR and cs.FL

Abstract: Accelerating finite automata processing is critical for advancing real-time analytic in pattern matching, data mining, bioinformatics, intrusion detection, and machine learning. Recent in-memory automata accelerators leveraging SRAMs and DRAMs have shown exciting improvements over conventional digital designs. However, the bit-vector representation of state transitions used by all SOTA designs is only optimal in processing worst-case completely random patterns, while a significant amount of memory and energy is wasted in running most real-world benchmarks. We present CAMA, a Content-Addressable Memory (CAM) enabled Automata accelerator for processing homogeneous non-deterministic finite automata (NFA). A radically different state representation scheme, along with co-designed novel circuits and data encoding schemes, greatly reduces energy, memory, and chip area for most realistic NFAs. CAMA is holistically optimized with the following major contributions: (1) a 16x256 8-transistor (8T) CAM array for state matching, replacing the 256x256 6T SRAM array or two 16x256 6T SRAM banks in SOTA designs; (2) a novel encoding scheme that enables content searching within 8T SRAMs and adapts to different applications; (3) a reconfigurable and scalable architecture that improves efficiency on all tested benchmarks, without losing support for any NFA that is compatible with SOTA designs; (4) an optimization framework that automates the choice of encoding schemes and maps a given NFA to the proposed hardware. Two versions of CAMA, one optimized for energy (CAMA-E) and the other for throughput (CAMA-T), are comprehensively evaluated in a 28nm CMOS process, and across 21 real-world and synthetic benchmarks. CAMA-E achieves 2.1x, 2.8x, and 2.04x lower energy than CA, 2-stride Impala, and eAP. CAMA-T shows 2.68x, 3.87x and 2.62x higher average compute density than 2-stride Impala, CA, and eAP.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube