Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Public Data-Assisted Mirror Descent for Private Model Training (2112.00193v2)

Published 1 Dec 2021 in cs.LG and cs.CR

Abstract: In this paper, we revisit the problem of using in-distribution public data to improve the privacy/utility trade-offs for differentially private (DP) model training. (Here, public data refers to auxiliary data sets that have no privacy concerns.) We design a natural variant of DP mirror descent, where the DP gradients of the private/sensitive data act as the linear term, and the loss generated by the public data as the mirror map. We show that, for linear regression with feature vectors drawn from a non-isotropic sub-Gaussian distribution, our algorithm, PDA-DPMD (a variant of mirror descent), provides population risk guarantees that are asymptotically better than the best known guarantees under DP (without having access to public data), when the number of public data samples ($n_{\sf pub}$) is sufficiently large. We further show that our algorithm has natural "noise stability" properties that control the variance due to noise added to ensure DP. We demonstrate the efficacy of our algorithm by showing privacy/utility trade-offs on four benchmark datasets (StackOverflow, WikiText-2, CIFAR-10, and EMNIST). We show that our algorithm not only significantly improves over traditional DP-SGD, which does not have access to public data, but to our knowledge is the first to improve over DP-SGD on models that have been pre-trained with public data.

Citations (45)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.