Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

RADU: Ray-Aligned Depth Update Convolutions for ToF Data Denoising (2111.15513v2)

Published 30 Nov 2021 in cs.CV

Abstract: Time-of-Flight (ToF) cameras are subject to high levels of noise and distortions due to Multi-Path-Interference (MPI). While recent research showed that 2D neural networks are able to outperform previous traditional State-of-the-Art (SOTA) methods on denoising ToF-Data, little research on learning-based approaches has been done to make direct use of the 3D information present in depth images. In this paper, we propose an iterative denoising approach operating in 3D space, that is designed to learn on 2.5D data by enabling 3D point convolutions to correct the points' positions along the view direction. As labeled real world data is scarce for this task, we further train our network with a self-training approach on unlabeled real world data to account for real world statistics. We demonstrate that our method is able to outperform SOTA methods on several datasets, including two real world datasets and a new large-scale synthetic data set introduced in this paper.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.