Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Reconstruction Student with Attention for Student-Teacher Pyramid Matching (2111.15376v2)

Published 30 Nov 2021 in cs.CV and eess.IV

Abstract: Anomaly detection and localization are important problems in computer vision. Recently, Convolutional Neural Network (CNN) has been used for visual inspection. In particular, the scarcity of anomalous samples increases the difficulty of this task, and unsupervised leaning based methods are attracting attention. We focus on Student-Teacher Feature Pyramid Matching (STPM) which can be trained from only normal images with small number of epochs. Here we proposed a powerful method which compensates for the shortcomings of STPM. Proposed method consists of two students and two teachers that a pair of student-teacher network is the same as STPM. The other student-teacher network has a role to reconstruct the features of normal products. By reconstructing the features of normal products from an abnormal image, it is possible to detect abnormalities with higher accuracy by taking the difference between them. The new student-teacher network uses attention modules and different teacher network from the original STPM. Attention mechanism acts to successfully reconstruct the normal regions in an input image. Different teacher network prevents looking at the same regions as the original STPM. Six anomaly maps obtained from the two student-teacher networks are used to calculate the final anomaly map. Student-teacher network for reconstructing features improved AUC scores for pixel level and image level in comparison with the original STPM.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube