Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Global Convergence Using Policy Gradient Methods for Model-free Markovian Jump Linear Quadratic Control (2111.15228v1)

Published 30 Nov 2021 in cs.LG and math.OC

Abstract: Owing to the growth of interest in Reinforcement Learning in the last few years, gradient based policy control methods have been gaining popularity for Control problems as well. And rightly so, since gradient policy methods have the advantage of optimizing a metric of interest in an end-to-end manner, along with being relatively easy to implement without complete knowledge of the underlying system. In this paper, we study the global convergence of gradient-based policy optimization methods for quadratic control of discrete-time and model-free Markovian jump linear systems (MJLS). We surmount myriad challenges that arise because of more than one states coupled with lack of knowledge of the system dynamics and show global convergence of the policy using gradient descent and natural policy gradient methods. We also provide simulation studies to corroborate our claims.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.