Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Online metric allocation (2111.15169v1)

Published 30 Nov 2021 in cs.DS

Abstract: We introduce a natural online allocation problem that connects several of the most fundamental problems in online optimization. Let $M$ be an $n$-point metric space. Consider a resource that can be allocated in arbitrary fractions to the points of $M$. At each time $t$, a convex monotone cost function $c_t: [0,1]\to\mathbb{R}+$ appears at some point $r_t\in M$. In response, an algorithm may change the allocation of the resource, paying movement cost as determined by the metric and service cost $c_t(x{r_t})$, where $x_{r_t}$ is the fraction of the resource at $r_t$ at the end of time $t$. For example, when the cost functions are $c_t(x)=\alpha x$, this is equivalent to randomized MTS, and when the cost functions are $c_t(x)=\infty\cdot 1_{x<1/k}$, this is equivalent to fractional $k$-server. We give an $O(\log n)$-competitive algorithm for weighted star metrics. Due to the generality of allowed cost functions, classical multiplicative update algorithms do not work for the metric allocation problem. A key idea of our algorithm is to decouple the rate at which a variable is updated from its value, resulting in interesting new dynamics. This can be viewed as running mirror descent with a time-varying regularizer, and we use this perspective to further refine the guarantees of our algorithm. The standard analysis techniques run into multiple complications when the regularizer is time-varying, and we show how to overcome these issues by making various modifications to the default potential function. We also consider the problem when cost functions are allowed to be non-convex. In this case, we give tight bounds of $\Theta(n)$ on tree metrics, which imply deterministic and randomized competitive ratios of $O(n2)$ and $O(n\log n)$ respectively on arbitrary metrics. Our algorithm is based on an $\ell_22$-regularizer.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.