Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Computer Vision Aided Beam Tracking in A Real-World Millimeter Wave Deployment (2111.14803v1)

Published 29 Nov 2021 in eess.SP, cs.IT, and math.IT

Abstract: Millimeter-wave (mmWave) and terahertz (THz) communications require beamforming to acquire adequate receive signal-to-noise ratio (SNR). To find the optimal beam, current beam management solutions perform beam training over a large number of beams in pre-defined codebooks. The beam training overhead increases the access latency and can become infeasible for high-mobility applications. To reduce or even eliminate this beam training overhead, we propose to utilize the visual data, captured for example by cameras at the base stations, to guide the beam tracking/refining process. We propose a ML framework, based on an encoder-decoder architecture, that can predict the future beams using the previously obtained visual sensing information. Our proposed approach is evaluated on a large-scale real-world dataset, where it achieves an accuracy of $64.47\%$ (and a normalized receive power of $97.66\%$) in predicting the future beam. This is achieved while requiring less than $1\%$ of the beam training overhead of a corresponding baseline solution that uses a sequence of previous beams to predict the future one. This high performance and low overhead obtained on the real-world dataset demonstrate the potential of the proposed vision-aided beam tracking approach in real-world applications.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.