Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A high-order discontinuous Galerkin in time discretization for second-order hyperbolic equations (2111.14642v1)

Published 29 Nov 2021 in math.NA and cs.NA

Abstract: The aim of this paper is to apply a high-order discontinuous-in-time scheme to second-order hyperbolic partial differential equations (PDEs). We first discretize the PDEs in time while keeping the spatial differential operators undiscretized. The well-posedness of this semi-discrete scheme is analyzed and a priori error estimates are derived in the energy norm. We then combine this $hp$-version discontinuous Galerkin method for temporal discretization with an $H1$-conforming finite element approximation for the spatial variables to construct a fully discrete scheme. A prior error estimates are derived both in the energy norm and the $L2$-norm. Numerical experiments are presented to verify the theoretical results.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)