Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Randomized block Gram-Schmidt process for solution of linear systems and eigenvalue problems (2111.14641v2)

Published 29 Nov 2021 in math.NA and cs.NA

Abstract: This article introduces randomized block Gram-Schmidt process (RBGS) for QR decomposition. RBGS extends the single-vector randomized Gram-Schmidt (RGS) algorithm and inherits its key characteristics such as being more efficient and having at least as much stability as any deterministic (block) Gram-Schmidt algorithm. Block algorithms offer superior performance as they are based on BLAS3 matrix-wise operations and reduce communication cost when executed in parallel. Notably, our low-synchronization variant of RBGS can be implemented in a parallel environment using only one global reduction operation between processors per block. Moreover, the block Gram-Schmidt orthogonalization is the key element in the block Arnoldi procedure for the construction of a Krylov basis, which in turn is used in GMRES, FOM and Rayleigh-Ritz methods for the solution of linear systems and clustered eigenvalue problems. In this article, we develop randomized versions of these methods, based on RBGS, and validate them on nontrivial numerical examples.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.