Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning-Based Video Coding with Joint Deep Compression and Enhancement (2111.14474v2)

Published 29 Nov 2021 in eess.IV and cs.CV

Abstract: The end-to-end learning-based video compression has attracted substantial attentions by paving another way to compress video signals as stacked visual features. This paper proposes an efficient end-to-end deep video codec with jointly optimized compression and enhancement modules (JCEVC). First, we propose a dual-path generative adversarial network (DPEG) to reconstruct video details after compression. An $\alpha$-path facilitates the structure information reconstruction with a large receptive field and multi-frame references, while a $\beta$-path facilitates the reconstruction of local textures. Both paths are fused and co-trained within a generative-adversarial process. Second, we reuse the DPEG network in both motion compensation and quality enhancement modules, which are further combined with other necessary modules to formulate our JCEVC framework. Third, we employ a joint training of deep video compression and enhancement that further improves the rate-distortion (RD) performance of compression. Compared with x265 LDP very fast mode, our JCEVC reduces the average bit-per-pixel (bpp) by 39.39\%/54.92\% at the same PSNR/MS-SSIM, which outperforms the state-of-the-art deep video codecs by a considerable margin.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.