Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Motion-from-Blur: 3D Shape and Motion Estimation of Motion-blurred Objects in Videos (2111.14465v2)

Published 29 Nov 2021 in cs.CV, cs.AI, cs.GR, and cs.LG

Abstract: We propose a method for jointly estimating the 3D motion, 3D shape, and appearance of highly motion-blurred objects from a video. To this end, we model the blurred appearance of a fast moving object in a generative fashion by parametrizing its 3D position, rotation, velocity, acceleration, bounces, shape, and texture over the duration of a predefined time window spanning multiple frames. Using differentiable rendering, we are able to estimate all parameters by minimizing the pixel-wise reprojection error to the input video via backpropagating through a rendering pipeline that accounts for motion blur by averaging the graphics output over short time intervals. For that purpose, we also estimate the camera exposure gap time within the same optimization. To account for abrupt motion changes like bounces, we model the motion trajectory as a piece-wise polynomial, and we are able to estimate the specific time of the bounce at sub-frame accuracy. Experiments on established benchmark datasets demonstrate that our method outperforms previous methods for fast moving object deblurring and 3D reconstruction.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.