Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Data Augmentation For Medical MR Image Using Generative Adversarial Networks (2111.14297v1)

Published 29 Nov 2021 in cs.CV, cs.LG, and eess.IV

Abstract: Computer-assisted diagnosis (CAD) based on deep learning has become a crucial diagnostic technology in the medical industry, effectively improving diagnosis accuracy. However, the scarcity of brain tumor Magnetic Resonance (MR) image datasets causes the low performance of deep learning algorithms. The distribution of transformed images generated by traditional data augmentation (DA) intrinsically resembles the original ones, resulting in a limited performance in terms of generalization ability. This work improves Progressive Growing of GANs with a structural similarity loss function (PGGAN-SSIM) to solve image blurriness problems and model collapse. We also explore other GAN-based data augmentation to demonstrate the effectiveness of the proposed model. Our results show that PGGAN-SSIM successfully generates 256x256 realistic brain tumor MR images which fill the real image distribution uncovered by the original dataset. Furthermore, PGGAN-SSIM exceeds other GAN-based methods, achieving promising performance improvement in Frechet Inception Distance (FID) and Multi-scale Structural Similarity (MS-SSIM).

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.