TAL: Two-stream Adaptive Learning for Generalizable Person Re-identification (2111.14290v1)
Abstract: Domain generalizable person re-identification aims to apply a trained model to unseen domains. Prior works either combine the data in all the training domains to capture domain-invariant features, or adopt a mixture of experts to investigate domain-specific information. In this work, we argue that both domain-specific and domain-invariant features are crucial for improving the generalization ability of re-id models. To this end, we design a novel framework, which we name two-stream adaptive learning (TAL), to simultaneously model these two kinds of information. Specifically, a domain-specific stream is proposed to capture training domain statistics with batch normalization (BN) parameters, while an adaptive matching layer is designed to dynamically aggregate domain-level information. In the meantime, we design an adaptive BN layer in the domain-invariant stream, to approximate the statistics of various unseen domains. These two streams work adaptively and collaboratively to learn generalizable re-id features. Our framework can be applied to both single-source and multi-source domain generalization tasks, where experimental results show that our framework notably outperforms the state-of-the-art methods.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.