Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Automated Runtime-Aware Scheduling for Multi-Tenant DNN Inference on GPU (2111.14255v1)

Published 28 Nov 2021 in cs.DC

Abstract: With the fast development of deep neural networks (DNNs), many real-world applications are adopting multiple models to conduct compound tasks, such as co-running classification, detection, and segmentation models on autonomous vehicles. Such multi-tenant DNN inference cases greatly exacerbate the computational complexity and call for comprehensive collaboration for graph-level operator scheduling, runtime-level resource awareness, as well as hardware scheduler support. However, the current scheduling support for such multi-tenant inference is still relatively backward. In this work, we propose a resource-aware scheduling framework for efficient multi-tenant DNN inference on GPU, which automatically coordinates DNN computing in different execution levels. Leveraging the unified scheduling intermediate representation and the automated ML-based searching algorithm, optimal schedules could be generated to wisely adjust model concurrency and interleave DNN model operators, maintaining a continuously balanced resource utilization across the entire inference process, and eventually improving the runtime efficiency. Experiments show that we could consistently achieve 1.3-1.7x speed-up, compared to regular DNN runtime libraries (e.g., CuDNN, TVM) and particular concurrent scheduling methods (e.g., NVIDIA Multi-Stream).

Citations (34)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.