Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Zero-Shot Cross-Lingual Transfer in Legal Domain Using Transformer Models (2111.14192v2)

Published 28 Nov 2021 in cs.CL and cs.AI

Abstract: Zero-shot cross-lingual transfer is an important feature in modern NLP models and architectures to support low-resource languages. In this work, We study zero-shot cross-lingual transfer from English to French and German under Multi-Label Text Classification, where we train a classifier using English training set, and we test using French and German test sets. We extend EURLEX57K dataset, the English dataset for topic classification of legal documents, with French and German official translation. We investigate the effect of using some training techniques, namely Gradual Unfreezing and LLM finetuning, on the quality of zero-shot cross-lingual transfer. We find that LLM finetuning of multi-lingual pre-trained model (M-DistilBERT, M-BERT) leads to 32.0-34.94%, 76.15-87.54% relative improvement on French and German test sets correspondingly. Also, Gradual unfreezing of pre-trained model's layers during training results in relative improvement of 38-45% for French and 58-70% for German. Compared to training a model in Joint Training scheme using English, French and German training sets, zero-shot BERT-based classification model reaches 86% of the performance achieved by jointly-trained BERT-based classification model.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.